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Effective generalization in a multiple-category situation involves both assessing potential membership in individual categories and
resolving conflict between categories while implementing a decision bound. We separated generalization from decision bound imple-
mentation using an information integration task in which category exemplars varied over two incommensurable feature dimensions.
Human subjects first learned to categorize stimuli within limited training regions, and then, during fMRI scanning, they also categorized
transfer stimuli from new regions of perceptual space. Transfer stimuli differed both in distance from the training region prototype and
distance from the decision bound, allowing us to independently assess neural systems sensitive to each. Across all stimulus regions,
categorization was associated with activity in the extrastriate visual cortex, basal ganglia, and the bilateral intraparietal sulcus. Catego-
rizing stimuli near the decision bound was associated with recruitment of the frontoinsular cortex and medial frontal cortex, regions
often associated with conflict and which commonly coactivate within the salience network. Generalization was measured in terms of
greater distance from the decision bound and greater distance from the category prototype (average training region stimulus). Distance
from the decision bound was associated with activity in the superior parietal lobe, lingual gyri, and anterior hippocampus, whereas
distance from the prototype was associated with left intraparietal sulcus activity. The results are interpreted as supporting the existence
of different uncertainty resolution mechanisms for uncertainty about category membership (representational uncertainty) and uncer-
tainty about decision bound (decisional uncertainty).
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Introduction
Generalizing learned categorical knowledge and applying it to
new stimuli is crucial for adapting to novel situations. Category
structure is graded: different exemplars have different degrees of
membership. According to prototype learning theories (Minda
and Smith, 2001; Love et al., 2004), novel stimuli are categorized
as members or nonmembers of a single category (an A/not-A
task) based on similarity to the average stimulus (Davis et al.,
2014). The degree of membership for stimuli is often operation-
alized as distance in perceptual space from the prototype (Smith
and Minda, 2002). Previous neuroimaging studies investigating
generalization to novel regions of perceptual space using A/not-A
tasks report greater activity for more distant stimuli in visual

regions and across a frontal–parietal–striatal network (Reber et
al., 1998; Daniel et al., 2011). In a single-unit recording study in
macaques, Antzoulatos and Miller (2011, 2014) found that stria-
tal neurons were active when categorizing previously trained
stimuli, whereas prefrontal cells were recruited for generalizing
categorical knowledge to novel exemplars. Learning to categorize
stimuli into two categories (A/B tasks) is more complex: it re-
quires consideration of both potential membership in each cate-
gory and the decision bound between the categories. A/B category
learning-related changes have been reported in a similar fronto-
parietal–striatal network (Shohamy et al., 2008; Seger et al.,
2010).

We examined generalization to novel regions of perceptual
space in an A/B task and dissociated neural systems underlying
generalization from those underlying conflict resolution during
decision bound implementation. We used an information inte-
gration paradigm in which stimuli are formed by varying two
features, bar width and orientation (Fig. 1), resulting in two cat-
egories separated by a diagonal decision bound. This task reliably
recruits striatal and cortical regions generally associated with cat-
egory learning (Seger and Cincotta, 2002; Cincotta and Seger,
2007; Waldschmidt and Ashby, 2011). We pretrained subjects on
stimuli from a training region (Fig. 1, red region), and then,
during scanning, they categorized novel stimuli from the training
region and three transfer regions: (1) parallel to the decision
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bound (“Flanking”; pink region); (2) farther from the decision
bound (“Far”; black region); and (3) between the training regions
along the decision bound (“Boundary”; blue region). The Flank-
ing and Far stimuli had similar distances from training region
stimuli. This approach allowed us to perform categorical analyses
comparing activity between conditions and also to perform para-
metric analyses implementing two independent measures of dis-
tance in perceptual space: (1) distance from the decision bound;
and (2) distance from the appropriate category prototype.

Generalization was assessed in the parametric analyses exam-
ining greater distance from the prototype or decision bound and
categorical analyses comparing Flanking and Far stimuli with
Training stimuli. We predicted that generalization would recruit
lateral frontoparietal regions, particularly the lateral prefrontal
cortex (Antzoulatos and Miller, 2011), and regions along the in-
traparietal sulcus (IPS; Freedman and Assad, 2006; Braunlich et
al., 2015), as well as regions of the basal ganglia, in particular
regions of the posterior caudate associated with successful cate-
gory learning (Seger, 2008).

Decision bound implementation was assessed in the paramet-
ric analysis in terms of closeness to the bound and in the categor-
ical analyses comparing the Flanking and Training regions with
the Far region. In this task, decision bound implementation re-
quires resolution of conflicting potential category memberships;
stimuli near the decision bound could potentially be members of
both categories. We hypothesized that this resolution would re-
quire executive functions important in resolving response con-
flict and recruitment of the frontoinsular and medial frontal
cortical regions known as the salience network (Seeley et al., 2007;
Menon and Uddin, 2010; Ham et al., 2013). The salience network
is active during conflict processing across a wide range of psycho-
logical domains (Fan et al., 2014; Jung et al., 2014; Silvetti et al.,
2014). This hypothesis is supported by previous studies in which
subjects were instructed to classify stimuli using a specified deci-
sion bound that found that stimuli near the bound were associ-
ated consistently with activity in the medial prefrontal and
frontoinsular cortices (Grinband et al., 2006; White et al., 2012).

Figure 1. Top left, Distribution of scanning session stimuli in perceptual space. Red, Training region; black, Far region; pink, Flanking region; blue, Boundary region. Bottom left, Example stimuli
from non-Boundary regions, overlaid at the corresponding coordinates in perceptual space. Top right, Coding of stimuli in terms of distance from the decision bound; color scale from dark blue
(closest to the bound) to dark red (farthest from the bound). Bottom right, Coding of stimuli in terms of distance from the category prototype (central stimulus of the training region); color scale from
dark blue (closest to the prototype) to dark red (farthest from the prototype).
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Materials and Methods
Subjects. Nineteen subjects (seven males, 12 fe-
males) were recruited from the undergraduate
student population at South China Normal
University. All met criteria for MR scanning
and were paid for their participation. A total of
three were excluded after preprocessing for ex-
cessive motion during the scan (�2 mm shift
or 2° of rotation), resulting in a total of 16 in-
cluded in analyses.

Materials. Stimuli were circular sine wave
gratings, sometimes termed Gabor patches,
that varied only in spatial orientation and fre-
quency (Fig. 1). To generate these stimuli, we
first generated points within an “unrotated”
arbitrary 0:700 space. We then rotated these
points by 45° such that the optimal rule re-
quired the integration of both stimulus dimen-
sions (Fig. 1) and then transformed these
arbitrary dimensions into frequency and ori-
entation parameters used to generate the grat-
ings. Before rotation, Training cluster stimuli
were drawn from two bivariate uniform distri-
butions with 75 stimuli within each cluster
(both clusters: mean Y � 350, SD Y � 115, SD
X � 15.5; Category A: mean X � 260; Category
B: mean X � 440). Stimuli in the Boundary
clusters were drawn from two bivariate normal
distributions with 38 stimuli within each cluster (both clusters: mean Y �
350, SD Y � 80, SD X � 13; Category A: mean X � 320; Category B: mean
X � 320). Stimuli in the Far clusters were drawn from two bivariate
normal distributions with 75 stimuli within each cluster (both clusters:
mean Y � 350, SD Y � 53, SD X � 15.5; Category A: mean X � 100;
Category B: mean X � 600). Stimuli in the Flank clusters were drawn
from four bivariate normal distributions with 25 stimuli within each
cluster [the mean of each cluster was 400 units from the center of the
Training cluster on the Y dimension (350 � 400), each cluster SD X �
15.5, SD Y � 15.5; Category A: mean X � 260; Category B: mean X �
440]. After rotation, we transformed this arbitrary x, y space into orien-
tation and frequency space according to the following linear equations:
orientation (in degrees from horizontal counterclockwise) � x/7.7778;
frequency (in cycles per visual degree) � (y � 0.001) � 0.25.

The particular values for the distributions underlying the stimuli were
selected after extensive pilot testing. The goal was to select training dis-
tributions that would require subjects to integrate information across
both dimensions (i.e., one in which use of a unidimensional rule would
lead to low accuracy) but could also be learned to a high degree of accu-
racy in a 1 h session. Previous studies of transfer in information integra-
tion learning to adjacent regions of stimulus space found higher accuracy
for stimuli farther from the bound and lower accuracy in stimuli near the
bound (Maddox et al., 2005; Maddox and Filoteo, 2011). Casale et al.
(2012) examined transfer to stimuli at considerable distance from the
Training region along the stimulus bound and found very low accuracy
(in contrast with rule-based strategies, which support high generalization
accuracy). They argued that such transfer involves analogical processing
based on verbalizable rule knowledge, which is not present in informa-
tion integration. Our goal was to maintain the same accuracy level for
Flanking stimuli as the Training condition; this was necessary because we
wanted to examine accurate categorization and so that any differences in
neural activity between the two conditions could not be attributable to
simple accuracy differences. For the Far stimuli, higher accuracy was
unavoidable, so we chose to instead equate mean distance for both Far
and Flanking stimuli from the Training region. As described in Results
(see Behavioral results), our manipulations were successful: Flanking and
Training were categorized at equivalent levels of accuracy in the transfer
stage. Boundary stimuli were located between the two Training regions
along the decision bound and were included to more completely repre-

sent the full distribution of distances from decision bound in the model-
based analyses.

Procedure. Subjects participated in two sessions: (1) a training session
in a behavioral testing laboratory in the School of Psychology; and (2) a
scanning session at the Brain Imaging Center. All subjects completed the
training session in the morning and the scanning session in the afternoon
of the same day. During the study, subjects were given written instruc-
tions in English and spoken instructions in Mandarin Chinese (their
native language). All subjects had studied English previously, but to en-
sure comprehension, Chinese-speaking research assistants discussed the
instructions with subjects in Chinese before beginning testing proce-
dures. During training, subjects learned to categorize the stimuli through
trial and error. On each trial, they saw a stimulus, made a decision about
the correct category response (a button press with the right or left hand)
and received feedback about whether they were correct. After each cor-
rect categorization decision, the word “Correct!” was shown for 0.75 s in
green. After incorrect decisions, the word “Wrong” was shown for 0.75 s
in red. Subjects trained until they reached a 90% accuracy criterion 10
times. This criterion was polled after 20 trials and was reset after 22.
During training before scanning, subjects experienced only stimuli from
the two training clusters.

After training, we checked that all subjects were using an information
integration strategy by comparing several decision bound models
(Ashby, 1992; Maddox and Ashby, 1993; Maddox and Filoteo, 2011; Ell
and Ashby, 2012). The key model was the general linear classifier (GLC),
which assumes an information integration strategy characterized by a
diagonal decision bound and determines the best fitting bound based on
the subject’s responses. We compared the GLC with several additional
models. Three models assumed a rule-based strategy. Two of the rule-
based models assume unidimensional rules: (1) one based on orientation
alone that determined the best-fitting vertical decision bound; and (2)
one based on frequency alone that determined the best-fitting horizontal
decision bound. The third rule-based model, the general conjunctive
classifier (GCC), tests for a strategy of combining a value on one dimen-
sion with a value on the other as a conjunctive rule. In addition, we fit two
guessing models: (1) one that tested for random responding; and (2) one
that tested for a bias toward one response. To determine which model
best fit each subject’s behavioral data, we compared models with the
Bayesian information criterion (Schwarz, 1978). All subjects who partic-
ipated in the scanning sessions met a minimum criterion that their per-

Figure 2. Accuracy (percentage correct) and reaction time (milliseconds) measures for categorization during the scanning
session. Error bars show SE.
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formance during the last tercile of the training trials was best fit by the
GLC and thus consistent with information integration strategy use.

Subjects performed three fMRI scans during the scanning session,
each of which consisted of 112 task trials. During each scan, 28 stimuli
were drawn randomly from each of the four conditions (14 of which were
drawn from Category A and 14 were drawn from Category B), as illus-
trated in Figure 1. The trial format was the same as during training, but to
maximize scanning time while minimizing forgetting or strategy shifts
that might occur in the absence of feedback, feedback was provided on
50% of the trials for each condition and category. The interval between
trials was jittered according to a positively skewed geometric distribu-
tion, with a minimum interval of 2 s, a mean of 3.8, and a maximum of
9.5 s. Because the presentation of feedback was stochastic (occurring on
only 50% of trials), we used a shorter duration between response and
feedback. This interval was either 0.75 s (75% probability) or 2.25 s (25%
probability). We optimized the efficiency of the design through random
permutation testing with in-house software.

Image acquisition. Images were obtained with a 3.0 tesla MRI scanner
(Siemens) at the Brain Imaging Center at South China Normal Univer-
sity. The scanner was equipped with a 12-channel head coil. Structural
images were collected using a T1-weighted magnetization-prepared
rapid gradient echo sequence [256 � 256 matrix; field of view (FOV),
256; 192 1-mm slices]. Functional images were reconstructed from 25
axial oblique slices obtained using a T2*-weighted two-dimensional
echoplanar sequence (repetition time, 1500 ms; echo time, 30 ms; flip
angle, 76; FOV, 220 mm; 64 � 64 matrix; 4.5-mm-thick slices). The first
three volumes, which were collected before the magnetic field reached a
steady state, were discarded.

Preprocessing. Image preprocessing was performed using SPM 8
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8). Preprocessing in-
volved correction of slice time acquisition differences, motion correction
of each volume to the first volume of the first run using third-degree B
spline interpolation, and coregistration of the functional to the structural
data. Individual subject high-resolution anatomical volumes were seg-
mented and then normalized into Montreal Neurological Institute
(MNI) space using the Eastern template of SPM, which is appropriate for
Asian subjects. The resultant deformations were subsequently applied to
the functional images. Spatial smoothing was performed with a 6 mm
full-width at half-maximum Gaussian kernel. We additionally applied a
128 s high-pass temporal filter.

General linear model analyses. We performed two types of general lin-
ear model (GLM) analyses: (1) one with the stimuli coded categorically

(four conditions: Flanking, Far, Boundary, and Training); and (2) one
incorporating a parametric modulation based on distances from the pro-
totype and from the decision bound. For both, we modeled the duration
of each stimulus event as the difference between the stimulus onset and
the reaction time, and the duration of the feedback as the difference
between its onset and offset (0.75 s). Such variable duration epoch mod-
els have been shown to be more sensitive for cognitive events of variable
durations than impulse or constant-epoch models (Grinband et al.,
2008). In the categorical model, we included separate mean regressors for
the Training, Flanking, Boundary, and Far conditions. We included only
correct trials in our primary analyses but included incorrect trials in the
design matrix as a single regressor of no interest. We also included re-
gressors for correct and incorrect feedback. In the parametric model, we
did not include separate categorical regressors for the different condi-
tions. Instead, we included a single mean regressor for all stimuli and
included two parametric modulators: (1) distance from the bound; and
(2) distance from the center of the Training cluster (the prototype). The
values for each stimulus for these regressors are illustrated in the right
column of Figure 1. It should be noted that, for the parametric analyses,
we turned off the automatic orthogonalization in SPM, which allowed us
to investigate the unique effects of each regressor. Therefore, these para-
metric modulators allowed us to investigate changes along the respective
generalization gradients. As with the categorical model, we considered
only correct trials for our primary analyses but included incorrect trials in
the design matrix as regressors of no interest. We also included regressors
for correct and incorrect feedback. We did not explicitly model a baseline
task but instead compared conditions when appropriate with an implicit
baseline consisting of the mean signal during unmodeled time points.
Using an implicit baseline avoids the requirement of assuming that base-
line time point activity will follow a specific hemodynamic response
function and saves one degree of freedom in statistical analyses. All anal-
yses were corrected for multiple comparisons using the topological false
discovery rate method (Chumbley et al., 2010), with an initial (uncor-
rected) threshold set to p � 0.00001 and a corrected threshold of p �
0.05.

There is still controversy over whether the underlying cognitive level
representation of categories incorporates explicit representations of
prototypes and decision bounds or whether apparent use of proto-
types and decision bounds emerges from other processes. Exemplar

Figure 3. Overall categorization network. Blue, Areas active for Training region stimuli ver-
sus implicit baseline; red, conjunction analysis of four contrasts of each individual stimulus types
(Training, Flanking, Far, Boundary) versus implicit baseline. Note the common regions of acti-
vation of the medial prefrontal cortex, parietal regions along the IPS, lateral occipital and pos-
terior temporal visual processing regions, and striatal regions of the putamen and tail of the
caudate nucleus. Activity overlaid on the 3D template in MRIcron; slices are overlaid on the
average anatomical image at z�48 (bottom middle), y��30 (top right), and y�4 (bottom
right).

Table 1. Training > baseline

Size (mm 3) x y z

Bilateral IPS, precuneus, and occipital lobes
Calcarine 46,705 18 �97.5 �1.5

�12 �99 �4.5
Precuneus 18 �66 43.5

�16.5 �66 34.5
Lateral occipital �31.5 �87 �7.5

30 �84 15
�40.5 �69 �7.5

46.5 �67.5 �6
IPS �18 �72 55.5

�42 �43.5 49.5
�49.5 �24 37.5

46.5 �37.5 43.5
B medial frontal/anterior cingulate 6506 �3 6 52.5

15 21 27
L frontoinsular cortex, caudate, putamen 8624 �19.5 9 6

�39 �7.5 15
�24 �30 4.5

R frontoinsular cortex, caudate, putamen 10,365 25.5 �28.5 1.5
33 3 1.5
54 13.5 37.5
52.5 13.5 7.5

R middle frontal gyrus 2097 36 55.5 7.5
45 36 22.5

L superior frontal gyrus 698 �31.5 �3 67.5

x, y, z are coordinates in MNI space. B, Bilateral; L, left; R, right.
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theories propose that subjects categorize new
stimuli based on their average distance
from all previously experienced instances
(Kruschke, 1992). The striatal pattern classi-
fier model developed by Ashby et al. (2011)
proposes that subjects map small regions of
perceptual space to category membership.
Within our stimulus space, in which exem-
plars were distributed evenly across the stim-
ulus space of the training regions, exemplar,
prototype, and decision bound models make
similar predictions as to the effect of dis-
tance. Our parametric regressors are in-
tended to identify regions of the brain in
which activity varies along particular gener-
alization gradients but cannot speak to un-
derlying mechanisms.

Results
Behavioral results
All subjects successfully reached the train-
ing criterion of 10 blocks of 20 trials with
accuracy above 90%. In addition, all sub-
jects’ performance in the final tercile of
training was best fit by the GLC model,
indicating predecisional integration of in-
formation across the dimensions (Mad-
dox and Filoteo, 2011; Ell and Ashby,
2012).

During the scanning session, subjects
categorized stimuli from the four regions
of perceptual space. As illustrated in Fig-
ure 2, accuracy differed between these
conditions (F(3,45) � 81.25, p � 0.001,
� 2 � 0.74). Subjects were most accurate
in the Far condition (mean � SD, 97 �
0.06%) with intermediate accuracy in the
Training (mean � SD, 77 � 0.11% cor-
rect) and Flanking (mean � SD, 80�
0.09% correct) conditions. They were
least accurate in the Boundary condition
(mean � SD, 58 � 0.05%). Pairwise com-
parisons indicated that the Far condition
was significantly more accurate than the
Training, Flanking, and Boundary condi-
tions (t(15) � 8.39, t(15) � 6.37, t(15) �
28.6, respectively; all p values � 0.05).
Training and Flanking were significantly
more accurate than Boundary (t(15) � 8.4,
t(15) � 8.17, respectively; p values � 0.05).
Training and Flanking did not differ
(t � 1.0).

As can be seen in Figure 2, reaction
times overall paralleled accuracy. Reac-
tion time was significantly different be-
tween conditions (F(3,45) � 17.77, p �
0.001, � 2 � 0.15). Responses were fastest
in the Far condition (mean � SD, 824 �
125 ms), intermediate in Training
(mean � SD, 952 � 174 ms) and Flanking
(mean � SD, 929 � 157 ms), and slowest
in Boundary (mean � SD, 1016 � 211
ms). Pairwise comparisons indicated that the Far condition was
significantly faster than Training, Flanking, and Boundary con-
ditions (t(15) � 5.81, t(15) � 5.07, t(15) � 5.47, respectively).

Training and Flanking were significantly faster than Boundary
(t(15) � 3.73, t(15) � 2.44, respectively). Training and Flanking
did not differ (t � 1.0) consistent with previous behavioral stud-
ies (Maddox et al., 2005; Maddox and Filoteo, 2011).

Figure 4. Direct comparison of two types of transfer stimuli: Flanking and Far. Blue, Areas more active in Far than Flanking. Both
groups of stimuli were equated for distance from the training region stimuli and therefore had similar generalization demands
overall but differed in distance from the decision bound, with Far stimuli being more distant than Flanking. Red, Areas more active
in Flanking than Far. Note the salience network regions of the medial frontal cortex and frontoinsular cortex. Graphs show
percentage signal change for all four conditions within activated regions to illustrate the patterns of activity across conditions; time
courses were not subjected to additional statistical tests. Areas of activation are illustrated on slices from the average anatomical
image at z � 68, y � �55, z � 3, and x � 5, from top to bottom.
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Overall, the behavioral results match our predictions. Subjects
maintained high accuracy when categorizing stimuli from the
same regions on which they were trained (Training); accuracy
and speed both improved when subjects generalized to stimuli
farther from the decision bound (Fars), and both decreased when
subjects categorized stimuli closer to the decision bound (Bound-
ary). As in our pilot testing, Flanking and Training stimuli had
similar accuracy and reaction time. This indicates that subjects

were able to generalize to the novel regions of perception space
while maintaining high levels of performance.

Model-based analyses indicated that subjects were able to suc-
cessfully maintain an information integration strategy within the
scanning session despite the change of context to the scanning
environment, the introduction of transfer stimuli from new re-
gions of perceptual space, and reduction in proportion of feed-
back to half the trials. Of the 16 subjects whose data was included
in the analyses, 13 had behavior fit best by the GLC, indicating an
information integration strategy, throughout all three terciles of
the scanning task. The remaining three subjects’ performance
was best fit by the GLC in one or two of the terciles and one of the
other strategies (GCC, guessing, or unidimensional rule-based
classifier) on the remaining terciles.

fMRI contrasts
Our first set of analyses was to verify that the predicted cortical
network commonly recruited across categorization tasks was ac-
tive in this task as well. To do this, we examined Training region
stimuli with baseline as illustrated in Figure 3 (blue overlay) and
Table 1. Primary regions of activity included bilateral visual cor-
tical regions extending from the primary visual cortex anterior
and laterally to the inferior temporal gyri, regions of the basal
ganglia including the bilateral head of the caudate, putamen, and
tail of the caudate, medial frontal cortex in the vicinity of the
anterior cingulate, and bilateral inferior parietal cortex along the
IPS. The same network was mostly shared by across all condi-

Table 2. Contrasts between conditions

Size (mm 3) x y z

Far � near bound conditions
Far � Flanking

R superior parietal/postcentral gyrus 2561 31.5 �36 61.5
34.5 �27 42
49.5 �19.5 63

L superior parietal/postcentral gyrus 941 �19.5 �25.5 67.5
�30 �45 73.5

B medial occipital, lingual gyrus and cuneus,
and fusiform

6895 �19.5 �52.5 �4.5
3 �67.5 �12

13.5 �79.5 28.5
�21 �67.5 16.5
�16.5 �93 25.5

30 �69 �12
R frontoinsular cortex 313 36 �13.5 15

Far � Training
B medial occipital, lingual gyrus and cuneus,

and fusiform
4685 �25.5 �72 13.5

�13.5 �58.5 1.5
12 �78 30
22.5 �40.5 �12
16.5 �69 �3

L fusiform gyrus 364 �16.5 �42 �12
L superior parietal/postcentral gyrus 1107 �28.5 �31.5 54

�45 �12 61.5
Far � Boundary

L fusiform 434 �37.5 �57 �16.5
L fusiform 450 �13.5 �37.5 �12
L cuneus 486 �16.5 �81 27
R cuneus 321 16.5 �85.5 39
L superior parietal/postcentral gyrus 755 �43.5 �33 57

�27 �42 67.5
L supramarginal gyrus 215 �52.5 �28.5 25.5
R superior parietal/postcentral gyrus 391 30 �30 64.5
R supplementary motor area 299 12 �18 57
L putamen/anterior hippocampus 672 �24 �19.5 4.5

�27 �3 �10.5
R anterior hippocampus 664 24 �10.5 �15
R putamen 765 30 �9 12

Near bound conditions � Far
Flanking � Far

L frontoinsular cortex 328 �37.5 15 4.5
B medial frontal/anterior cingulate 241 1.5 31.5 49.5
R frontoinsular cortex 323 28.5 24 �3

48 18 6
Training � Far

R frontoinsular cortex 403 40.5 24 �1.5
Boundary � Far

R thalamus and brainstem 794 6 �30 �18
7.5 �15 7.5

R frontoinsular cortex 638 40.5 18 6
L thalamus 293 �12 �13.5 9
L frontoinsular cortex 395 �34.5 24 6

Contrasts between near bound conditions
Flanking � Boundary

L IPS 423 �48 �40.5 48

x, y, z are coordinates in MNI space. B, Bilateral; L, left; R, right.

Table 3. Parametric regressors: distance in perceptual space

Size (mm 3) X y z

Distance from decision bound (farther)
R superior parietal lobe, postcentral gyrus 2700 32 �32 65

48 �18 62
18 �53 65

L superior parietal, postcentral gyrus 1892 �26 �30 57
�14 �50 68

L inferior frontal 659 �56 �2 11
R supplementary motor area 448 12 �20 54
B occipital, lingual and fusiform gyri, cuneus 10,456 �17 �39 �14

�42 �57 �21
3 �74 20

�39 �71 �5
11 �57 �17
11 �38 �3

R middle temporal gyrus 428 54 �59 11
L middle temporal gyrus 345 �63 �47 2
R frontoinsular cortex and putamen 1500 38 �14 14

26 8 2
56 2 9

R anterior hippocampus 578 26 �3 �11
L putamen, frontoinsular cortex and hippocampus 1554 �41 �33 24

�26 �3 �11
Distance from decision bound (closer)

R frontoinsular cortex 792 39 20 5
L frontoinsular cortex 539 �32 14 6
B medial frontal/anterior cingulate 341 8 21 39
R thalamus and brainstem 411 12 �11 �2

8 �29 �20
L thalamus 155 �12 �12 6

Distance from prototype center (farther)
L inferior parietal and IPS 346 �54 �47 50

Distance from prototype center (closer)
No significantly activated clusters

x, y, z are coordinates in MNI space. B, Bilateral; L, left; R, right.
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tions, as is shown in a conjunction analy-
sis of all four individual contrasts versus
baseline, illustrated in Figure 3 (red
overlay).

We then compared individual condi-
tions illustrative of generalization and de-
cision bound implementation. For
generalization, the primary contrasts of
interest were those comparing the two
conditions equated for distance from the
training region, Far and Flanking, with
the Training and Boundary regions, and
each other. Although Far and Flanking re-
gions were equally distant from the Train-
ing region, they differed in distance from
the decision bound, so that differences be-
tween them can be attributed to factors
related to implementation of the decision
bound. Overall, similar regions were acti-
vated in contrasts comparing Far with
other conditions. As illustrated in Figure 4
and Table 2, Far stimuli activated right
and left regions of the superior parietal
lobe, extending from the IPS to the post-
central gyrus. In addition, Far stimuli
were associated with activity across large
regions of the medial occipital lobe, in-
cluding the lingual gyrus and cuneus, ex-
tending to the fusiform gyrus. For the
Flanking condition, when compared with Boundary region stim-
uli, there was activity in the left inferior parietal lobe in the region
of the IPS. There were no additional areas of activation when
Training, Boundary, and Flanking were compared with each
other.

For decisional bound implementation, the primary contrasts
of interest were those comparing the conditions near the decision
bound with Far. As described in Table 2 (Near Bound Condi-
tions � Far) and illustrated in Figure 4 (for Flanking � Far) all
three contrasts (Flanking � Far, Training � Far, Boundary �
Far) showed similar recruitment of salience network regions, in-
cluding the bilateral frontoinsular and medial frontal cortices.

Parametric models
We formed two parametric regressors reflecting different dis-
tances in perceptual space. One was distance from the decision
bound. As shown in Table 3 and Figure 5, activity in the bilateral
frontoinsular and medial frontal cortices, midbrain, and thala-
mus increased as stimuli were closer to the decision bound. Con-
versely, the farther stimuli were from the decision bound, the
higher the activity in the superior parietal, lingual, bilateral puta-
men, and anterior hippocampus. The second parametric regres-
sor examined distance from the prototype for each category. This
regressor isolated activity in one region, the left inferior parietal
cortex, which increased in activity as stimulus distance from the
prototype increased. No regions were activated significantly in
the reverse contrast as a function of being closer to the prototype.

Feedback-related activity
Overall, feedback (both correct and incorrect compared with im-
plicit baseline) activated inferior temporal and fusiform visual
regions, which was expected because of the visual nature of the
feedback. In addition, the bilateral angular gyrus and left lateral
prefrontal cortex were active. The anterior caudate and anterior

putamen were significantly active compared with correct feed-
back with baseline but not compared with incorrect with base-
line, consistent with studies finding greater striatal activity for
correct feedback, potentially as a result of the rewarding and
informational properties of such feedback (Seger et al., 2010;
Tricomi and Fiez, 2012). In a direct comparison of correct versus
wrong feedback, wrong led to significantly greater activity in the
salience network, consistent with research finding error-related
activity in these regions (Klein et al., 2007; Ham et al., 2013).
Correct feedback led to significantly greater activity in small re-
gions of the precuneus and the supplementary motor area.

Discussion
We identified neural regions important for generalization and
dissociated generalization processes from general-purpose exec-
utive functions required for implementation of decision criteria.
Recent theoretical papers have argued that categorization should
be considered a type of decision making (Seger and Peterson,
2013). One important aspect of decision making that categoriza-
tion tasks are particularly suited for examining is uncertainty
(Bach and Dolan, 2012; Ma and Jazayeri, 2014). To generalize,
one must assess whether the novel stimulus is sufficiently related
to previously studied stimuli to be considered a category mem-
ber. Because category membership is graded, judgments are
inherently uncertain; we refer to this as stimulus or representa-
tional uncertainty. We found that generalization to stimuli far-
ther from the prototype corresponded with activity in left IPS,
and generalization to stimuli farther from the decision bound
corresponded with activity in superior parietal, lingual, and an-
terior hippocampal regions. Categorization tasks, particularly
those using an A/B design, entail uncertainty about the decision
bound dividing the two categories; we refer to this as decisional
uncertainty (Seger and Peterson, 2013). We operationalized de-

Figure 5. Parametric analysis results. Left top, Regions in which activity was predicted by a parametric regressor of distance
from the decision bound (illustrated in Fig. 1, top right). Note increased activity in the superior parietal, medial occipital and lingual
gyrus, putamen, and anterior hippocampus. Slices from left to right are at z�63, 8, and�16. Left bottom, Negative distance from
decision bound, i.e., higher activity for closer to the bound. Slices from left to right are at x�7, z�5, and y�23. Note the salience
network activity (bilateral frontoinsular and medial frontal cortices), plus midbrain and thalamic activity. Right, Regions in which
activity was predicted by a parametric regressor of distance from the prototype (central stimulus in the training region; illustrated
in Fig. 1, bottom right). Note the activity in the inferior parietal lobe; slices are at z � 49 and y � �46. No regions were
significantly predicted by the negative distance from the prototype, i.e., close to the prototype.
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cisional uncertainty as closeness to the decision bound and found
it recruited regions of the salience network.

Parietal and frontal roles in generalization
The primary regions associated with categorization and general-
ization were in the parietal lobe along the IPS (Fig. 6). The IPS has
been associated with accumulation of information for perceptual
decisions in many functional imaging studies (Ploran et al., 2007,
2011; Kayser et al., 2010; Sestieri et al., 2014). Neural activity in
macaque lateral intraparietal (LIP) area reflects an accumulation
of perceptual information relevant for a decision (Shadlen and
Newsome, 2001; Shadlen and Kiani, 2013; Ibos and Freedman,
2014) and is sensitive to category boundaries (Freedman and
Assad, 2006; Swaminathan and Freedman, 2012). The human
homolog of area LIP is thought to be in the IPS, medial to the
inferior parietal lobe (Sereno and Huang, 2014).

In addition to recruitment of IPS across conditions, some
parietal regions showed greater activity for generalization. Dis-
tance from the prototype recruited a relatively lateral and ante-
rior region of the left IPS, close to previously reported regions in
A/not-A tasks (Zeithamova et al., 2008; Daniel et al., 2011).
Greater distance from the decision bound recruited regions su-
perior to IPS, close to regions active in an A/B task in the study by

Zeithamova et al. (2008). The overall pat-
tern of greater superior parietal activity
farther from the decision bound parallels
results in decision making and memory
studies. White et al. (2012) found that
classifying stimuli closer to a decision
bound recruited IPS, whereas farther
from the bound recruited the superior pa-
rietal cortex. In declarative memory tasks,
superior parietal regions are associated
with novelty decisions, whereas IPS and
adjoining inferior parietal regions are as-
sociated with memory decisions (Vilberg
and Rugg, 2008; Nelson et al., 2010; Kim,
2011; Johnson et al., 2013; Hutchinson et
al., 2014); this difference between “new”
and “old” memories may reflect imple-
mentation of a memorial response
criterion.

In macaque research, the lateral pre-
frontal cortex has been associated with
generalization (Antzoulatos and Miller,
2011, 2014; Swaminathan and Freedman,
2012), but we did not find such activity. It
is possible that, in humans, prefrontal re-
gions may only be required for abstraction
to much more distantly related stimuli or
in rule-based categorization.

Decision-bound conflict resolution
We found greater activity in the medial
frontal and frontoinsular regions of the
salience network for stimuli closer to the
decision bound, which we interpret as at-
tributable to greater conflict between cat-
egories for near-bound stimuli. The
medial frontal cortex in particular has
been associated with cognitive control of
conflict (Rushworth and Behrens, 2008).
Mechanisms underlying conflict sensitiv-

ity in the salience network are still unclear; current models in-
clude those based on actor– critic reinforcement learning (Silvetti
et al., 2014) and information theory entropy measures (Fan et al.,
2014).

Basal ganglia and hippocampus
Early research posited competitive interactions between the basal
ganglia and hippocampal systems during category learning (Pol-
drack et al., 1999, 2001), but recent studies have found parallel
recruitment when task demands require the computational func-
tions of each region (Seger et al., 2011; Davis et al., 2012a,b). Both
the hippocampus and basal ganglia showed complex patterns of
activation in our study (Fig. 7).

Basal ganglia activation differed from seen by Antzoulatos and
Miller (2011), who found caudate neuron activity when catego-
rizing previously learned stimuli but not during generalization.
Striatal activity during generalization was at least as great as for
training stimuli, with some regions showing increased activity.
We interpret basal ganglia activity according to the multiple cor-
ticostriatal loops framework (Ashby et al., 1998; Seger, 2008). The
posterior caudate interacts with visual cortical regions and is as-
sociated with stimulus categorization (Seger and Cincotta, 2005;
Seger et al., 2010; Lopez-Paniagua and Seger, 2011). The poste-

Figure 6. Summary of patterns of activity in the parietal lobe. Blue, Region active across all conditions (conjunction of 4
individual contrasts of each condition vs implicit baseline); green, Regions of superior parietal lobe active for stimuli farther from
the decision bound (specific contrast shown is Far � Flanking); red, region of IPS sensitive to distance from prototype. Graphs
illustrate these patterns by plotting percentage signal change within each functionally derived region of interest, but time courses
were not subjected to additional statistical tests. Activity overlaid on the 3D template in MRIcron (top left) and a slice at x ��47
from the average anatomical image.
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rior caudate was recruited equally in all conditions; this may
indicate that category knowledge acquired during training ex-
tended to the transfer regions. We found greater posterior puta-
men activity for Far stimuli. The posterior putamen is associated
with motor functions (Peterson and Seger, 2013); however, mo-
tor demands were consistent across conditions in this study. Pu-
tamen activity may be attributable to more confident and/or
faster responses in the Far condition; the putamen is active dur-
ing speeded responses in studies investigating the speed–accuracy
tradeoff (Mulder et al., 2014). Motor responses for Far stimuli
may also be better learned; previous studies have shown a shift to
the putamen during intermediate stages of motor skill develop-
ment (Waldschmidt and Ashby, 2011).

The anterior hippocampus showed a significant negative de-
flection for Boundary stimuli, consistent with previous category
learning studies (Poldrack et al., 1999, 2001; Seger and Cincotta,
2005). Seger et al. (2011) found that the anterior hippocampus
was associated with novelty processing: activity was above base-
line the first time a stimulus was presented but decreased below
baseline during additional repetitions. Thus, one might be
tempted to invoke novelty as a factor; Far stimuli are more ex-
treme and so perhaps more novel than Boundary and Training.

However, the lack of a similar effect in Flanking argues against
this.

Relationship to the COVIS model
The COVIS (for “COmpetition between Verbal and Implicit Sys-
tems”) model posits that information integration categories are
learned by mapping regions of perceptual space to categorical
responses via the corticostriatal system passing from the visual
cortex through the posterior caudate to premotor regions (Ashby
et al., 1998, 2011; Cantwell et al., 2015). In COVIS, categorization
relies on striatal units that map regions of perceptual space sur-
rounding stimuli to categories. The size of these regions may
depend on task factors, with the default being a small number of
units each representing a relatively large region and more units
being required if more fine-grained distinctions must be made,
such as when representing a category defined as multiple discon-
tinuous regions of perceptual space (Maddox and Filoteo, 2011).
Given that our categories were relatively large and continuous,
the COVIS model would suggest that our subjects may have re-
cruited fewer striatal units each representing a large region of
perceptual space, with generalization being primarily attributable
to overlap between the transfer (Far and Flanking) regions and

Figure 7. Patterns of activity in the basal ganglia and hippocampus. Regions of interest in the caudate were defined on the basis of the Training versus implicit baseline contrast; those in the
caudate head and body on the basis of the Flanking� Far contrast, and those in the putamen and hippocampus were formed from the distance from the decision bound parametric regressor. Graphs
are to illustrate activity across conditions and have not been subjected to additional significance testing. Slices for the caudate tail are at z � 1 and y ��29, caudate head and body at z � 10 and
y � 6, putamen at z � 7 and y � �15; anterior hippocampus at y � �9 and z � �19.
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these large regions. This interpretation is supported by our find-
ing of a similar degree of posterior caudate activity across all
conditions. Alternatively, rule-based knowledge might have been
involved, particularly for the Far region stimuli. Casale et al.
(2012) found no transfer to a distant region in an information
integration task but excellent transfer across a similar distance in
a rule-based task, implying that prefrontally mediated verbaliz-
able rules play a key role for generalization across extensive dis-
tances. Additional research using larger distances in perceptual
space is necessary to determine the boundary conditions between
when generalization can be accomplished through the striatal
system and when it is necessary to shift to a rule-based system.

A/B versus A/not-A tasks and multiple memory systems
Our results also provide additional insight into the functions
underlying A/B task performance that may help to explain differ-
ences between A/B and A/not-A tasks. A/not-A task performance
is preserved in patients with amnesia and related disorders, but
A/B is not (Reed et al., 1999; Smith and Minda, 2001; Smith and
Grossman, 2008), which has been interpreted as evidence that
these tasks recruit independent memory systems. Zeithamova et
al. (2008) compared early A/not-A and A/B learning and found
higher frontoparietal and hippocampus activity in A/B and
higher visual cortex and basal ganglia in A/not-A. Casale and
Ashby (2008) argued on the basis of behavioral work that A/B
tasks involve recruitment of a broader array of memory systems
than A/not-A tasks, which might rely on perceptual represen-
tations. One important difference between A/not-A and A/B
tasks is that decision bound implementation is of greater im-
portance in A/B tasks; although A/not-A tasks do require im-
plementation of a decision threshold separating category
members from nonmembers, the tasks used in neuropsycho-
logical studies made low demands on these processes in that
category members needed only be distinguished from com-
pletely random stimuli.

Conclusion
We successfully dissociated neural regions underlying generaliza-
tion (representational uncertainty) from those underlying con-
flict resolution in implementation of decision criteria (decisional
uncertainty). Categorization tasks may prove particularly useful
in other decision-making domains for studying transfer and gen-
eralization to novel situations.
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